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Instability of Alexander-McTague crystals and its implication for nucleation
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We show that the argument of Alexander and McTague, that the bcc crystalline structure is favored in those
crystallization processes where the first-order character is not too pronounced, is not correct. We find that any
solution that satisfies the Alexander-McTague condition is not stable. We investigate the implication of this
result for nucleation near the pseudospinodal in near-meanfield systems.

DOI: 10.1103/PhysReVvE.64.056110 PACS nunier64.60.My, 64.70.Pf, 05.70.Jk, 64.60.Fr

[. INTRODUCTION systems with long range interactions. We argue that the
droplet with the structure indicated by the AM argument
Predicting the symmetry of crystalline phases from firstdominates the nucleation process. The fact that this droplet is
principles and the knowledge of the intermolecular potentiaunstable is, unlike the phases proposed by AM, physically
has eluded condensed matter physicists for years. One prorfeasonable and consistent with other results. In addition we
ising path was suggested by Alexander and McTagwd)  investigate the bifurcation analysis of GM and show that the
[1] who noted that the Landau-Ginsburg free energy indi-additional bifurcations to other symmetries that they find,
cated a particular crystalline form if the first-order nature ofwhich are not found by AM are not relevant to nucleation.
the transition from the liquid was not too pronounced. For The remainder of this paper is structured as follows. In
systems such as those that interact with a Lennard-Jodes Sec. Il we describe the method of AM. In Sec. Ill we present
potential the AM argument indicated that the crystallinethe argument for instability. In Secs. IV and V we discuss the
phase would have a triangular or hexagonal structurd in implcations of this argument for nucleation of the crystal
=2 while the same argument suggested that the bcc lattickom the liquid and in Sec. VI we summarize and discuss our
would be favored ird=3. This conclusion is independent of results.
the details of the potential as long as, like LJ, it is spherically
symmetric and the fluid is monatomic. However, simulations Il ALEXANDER-McTAGUE
of LJ and hard sphere systems as well as experiments on
metals and rare gasses indicate that these systems freeze intaln this section we give a brief description of the argument
an fcc structurg2,3]. This result is also obtained by the of AM [1]. We will use a slightly different, but equivalent
application of density functional theori¢4,5]. approach. We begin with the Landau-Ginzburg free energy
In a related development Klein and Leyvrig used the
AM argument to look at nucleation of the crystal from the 1 N, R _
metastable liquid in a meanfield system near the spinodal and=(p) = EJ f C(|x=y[)p(X)p(y)dxdy+ f f(p(x), T)dx
found a hexagonal or triangular structure for the critical
droplet ind=2 and stacked triangular or hexagonal planes or ..
a bcc structure iml=3. However, this droplet was unstable. —hf p(x)dx. (]
In addition, Groh and MuldekGM) [7] also looked at a
mean-field system near a spinodal and, using bifurcation . . .
analysis, also noted that the AM argument said nothing abo f the above we assume, following AM, that the interaction

the nature of the stable solid but only indicated that a bifur-€M s qu_adratic ip _and thatf (p,T) can b(_a expanded_in a
cation to a bce structure id=3 was favored over bifurca- POWEr SEres iip for fixed T. The quantityh is the chemical

tions to other periodic structures but the stability of the bchOter.]t"".‘l' The quer-Lagrange equation that_ speuﬂe; the
structure was beyond the AM or bifurcation analysis. I:mmequmbrlum state is obtained by functionally differentiating

these results it is still unclear what the meaning or accurac;';q' (1) and setting the derivative equal to zero.
is of the AM argument. It is the purpose of this paper to

perform some additional analysis of these results. Clli—v dv af(p,T)

In this paper we present an argument indicating that any (Ix=yDp(y)dy+ dp

crystal satisfying the conditions in AM must be unstable.
This argument, which uses the Landau-Ginzburg approac
employed by AM does not require that the system be meal Y
field. In addition we use the techniques of AM to investigate the stable or metastable liquid at the value3 andh we

the nucleation process near the spinodal-like singularity ird"® investigating. Definingl(x) through p(x) = po+ i(X)
and inserting this expression in E@) we obtain

—h=0. (2

We assume that there is a constant solutigicorresponding
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Hereb(h,T) is the coefficient of the term quadratic j&()?)
arising out of a Taylor series expansion &f(p)/dp. The
dependence ab(h,T) onh andT is throughp,. The term
A(IX—y|)=C(|x—y|) +b,8(x—Yy) whereb; is the coeffi-
cient of the term linear irqb(i) in the Taylor expansion that
also depends ohandT throughp, and 5()2—)7) is the Dirac

S function. Following AM we have truncated the Taylor ex-
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©

> cq(h, Ak, explik,-Xx)+b(h,T)

n=1

©

2
x| >, cy(h, T)exp(ik,-x)| =0.
1

(6)

We now takec,(h,T) ...cq(h,T)~e€ and all otherc,(h,T)

pansion after the quadratic term using the assumption thab be higher order ire. We can assumé\(|lzn|)~1 for n

#(x)<1, i.e., the first-order nature of the transition is not too

#1,...d. Itis straightforward to generalize this argument

pronounced. We will see that this can be justified in a selfio the case of a finite number of degenerate global minima.

consistent manner.
Again following AM we consider the system in the neigh-
borhood of a critical point associated with the flfiid. The

critical point is characterized bi(|Kk,)|)=0, where|K,| is
the location of the global minimum & (|(k|) defined in Eq.

(1). Near the critical poinfA(|k,|)=e<1. The hat denotes
the Fourier Transform and=(T—Tg)/Tg5 whereTg is the
critical temperature. From Ed3) we obtain, after Fourier
transform,

A(||2|>£a<|2>+b<h,T>f (k=K ) (k' )dk'=0. (4)

There is one solution of Eqg4) that scales withe, i.e.,
#(K)~e or ¥(X)~e. The scaling justifies neglecting the
higher-order terms iy since they will be higher order ie.

For e<1 the modes with magnitudé,| dominate the solu-
tion. In the limit e—~0 these modes are the only ones that
contribute. Since these modes dominate dexl they must

be such thaf=9_ exp(k,-X)]* has the same symmetry as
exp(kon-X). Herek, , is one of thed reciprocal lattice vec-

tors with magnitudélzo|. Note that the sum contains expo-
nentials and their complex conjugates as the sum must be
real. Therefore as in AM we must have that the reciprocal
lattice vectors form equilateral triangles. In two dimensions
this generates a triangular or hexagonal lattice in real space
and in three dimensions either bcc or layered triangular or
hexagonal structures. This result was also derived via a bi-
furcation analysis by GM7]. In the following section we
investigate the stability of the solutions of E®).

Ill. STABILITY OF THE ALEXANDER-McTAGUE

SOLUTIONS
To check the stability of the solutions of E() we per-

Such scaling solutions, assuming of course that they existym simple linear stability analysis. Writing(;)Jr 77(;),

will have a free-energy cost that differs from the liquid by
terms of ordere. What about solutions that do not scale?
Unless the critical poinfTg is on the coexistence curve it

where 1;()2) is a small arbitrary perturbation anﬁ(i) is a
solution to Eq.(3), and inserting this in Eq.3) we obtain

seems likely that there would be solutions with a lower free

energy than the liquid as—0. This existence of other so-
lutions is what one would expect if, as we contend, the AM
solution is unstable. However, here we are simply following

A(x=y]) 7(y)dy+2b(h,T) (x) n(x) = D (9(X)).
(7

the AM argument and do not need to consider the possibility
of solutions of the Euler-Lagrange equation that do not scal@he function®(7(x)) can be expanded in the eigenvectors

and hence require higher-order terms in the Landau

of the operator on the left hand side of E@). If the eigen-

Ginzburg free energy than those allowed by AM. The quesvalues of the operator are all positive then the solution is
tion of solutions for nucleation droplets that do not scalelinearly stable. If there is at least one negative eigenvalue the

with e will be addressed in Sec. V.
We now assume that the solution of Eg) is of the form

P(X)=2, co(h,T)explik,-x), (5)

where thelzn are reciprocal lattice vectors. If we now talle
reciprocal lattice vectors, e.QZl o lZd whered is the spatial
dimension, to have a magnitutie,| then we have a solution
in which c; ...cg>c, for n>d whene...1;that is for

values ofh and T near the critical point.
To see this, we simply insert EEp) into Eq.(3) to obtain

solution is linearly unstable. We will show that there must
exist at least one negative eigenvalue.

The proof makes use of the well known fact that if we
have an Hermitian operatd® defined on a Hilbert space

then the average dd, which we will call 0, which is de-
fined as

(x|0]x)

6= {xIx)

®

is an upper bound for the lowest eigenvalue of the operator
0. Herelx) is any vector in the Hilbert space. The derivation
of this result is quite straightforward and can be found in
Ref.[8] as well as most elementary books on quantum me-
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chanics. Note that the operator in HJ) is both real and  pegin with this case first. SincA(k) is the k dependent
symmetric and hence Hermitian. The Hilbert space we use isusceptibility of the uniform fluid if the fluid is stable or
defined with plane wave normalization. ~~  metastable theA(k)>0 for all |k|. Using(x), the solution

Since we are primarily interested in the situation in whichto Eq. (3), as the vectofx) in our bound we have that the
the fluid phase with density, is stable or metastable we boundB is given by

f P (X)A(Xx—y|) ¢(y)dxdy+2b(h,T) J P (X)2(x)dx

B
f | h(X)|2dx

(€)

Since y(X) is a solution to Eq(3) the boundB reduces to  sumption,A(|k|)<0 for somelk|, A(|K,|)<0. Returning to
Eq. (3) multiplying by b(h,T) and integrating with respect to

P NPT U X yields
- J ¥ (A(X-Y)iy)dxdy o
B= (10
[ 1ucoox —o2n,T) [ [yl
b(h,T)C= 20 (14
Converting to Fourier space by using Parseval’s theorem we ©)
have Substituting Eq(14) into Eq. (13) we obtain
-8 lJklak- [ a0 FPAGRIGK 1 o
|| (R PA(IK]) (11 sz““T)f .
. BV=A(|K,|)V— A (15)
SinceA(|k|) is assumed to be positive definite we must have A(0)

B<0. Hence, the upper bound of the lowest eigenvalue is

less than zero that proves the result. Note the facta,mi) Sinceb(h,T) is real andA(“ZoD is assumed to be negative,
is periodic was never used in the argument that is thereforg A(0)>0 thenB<0. If A(0)<0 Eq.(3) can no longer be
valid for any solution of Eq(3). used to generate an equlibrium crystal. This occurs because

Although it is not relevant for the AM argument, where =~ - - db(h T functi t that i table t
the question of the structure of the solid phase near a stabféX ~¥) andb(h,T) are functions ofp, that is unstable to
spatially constant perturbations.

or metastable liquid was considered, for the sake of com ) . . :
pleteness we demonstrate that the solutions of (Bgare . 'I;he_ one §_|tuat|on Ieit to addresi is the o_ng in which
unstable whemA([k|)<0 for some valugs) of |k|; that is, A(|K]) is positive for all[k| except for|ko| where it is equal
when the liquid phase is unstable. Equatiejfor the lowest to zero. This is the situation in which the system is f‘t the
eigenvalue bound can be Written as Critical pOint. From Eq(ll) we now haVeBZO if lﬁ(k)
= 8(k—K,). This implies thaty(x)=exp(ky-X). However,
from our discussion in Sec. (x)~ e=A(|K,|)=0. There-
fore the solution of Eq(2) in this case describes the infi-
nitely long lived fluctuations at the critical point and not a
+2b(h,T) f POOW* (X)W(x)dx, phase. y N
Note that the condition that we be near a critical point
(120 (A(|k|])=e<1 for somelk|) was necessary to argue that the
AM crystals were in fact minima of the free energy. How-
where the operatdd is given in Eq.(7). We choose the test ever, the critical point condition was not used to show that
function w(x) = exp(K,-X) so that the solution of Eq(3) was unstable. In addition, we have not
specified the nature of the critical point. When the critical
point is a spinodal then the AM argument becomes quite
useful in determining the nature of the critical droplet in the
R . nucleation process that takes place near the pseudospinodal
whereC= [¢(x)dx andV is the system volume. Sinég is  in near-mean-field systems. We discuss this application in
the location of the global minimum oA(|k|) and, by as- the following section.

B f lw(x)|? dx= f w*(X)A(]x—y))w(y)dxdy

BV=A(|k,|)V+2b(h,T)C, (13
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Note also that the same argument that was used to showhere we have made the Taylor series expansiof{ ofT)
that the solutions of Eq.3) are unstable can be used on anyexplicit. The partition function in the canonical ensemble is
equation of the form

R, - Z=f¢3peXF{—BH(p)], (19
fA(Ix—yl)df(y)dy+q(h,T)<//”(x)=0. (16)
where 8= 1/KgT.

Using R=y"! and assuming thab(F)=p(§/R) the
HamiltonianH in terms of scaled lengths becomes

wheren in any integer greater than or equal to two.

IV. SPINODAL NUCLEATION OF A CRYSTAL
FROM THE LIQUID 1 o
H(p)=R? 5] AUF=")p(F)p(F")dF dF”

In this section we apply the ideas of AM to the problem of
the nucleation of a crystalline solid from the liquid near a -
pseudospinodal in a near-mean-field system. First we note AT >
that spinodals, in the sense that one finds them in the van der * E bn(h T)J pr(rydr hf p(r)
Waals theory of liquids or the Curie-Weiss theory of mag-
netic systems, are mean-figllF) objects. In Ising models For R>1 (i.e., the NMF limi the partition function in Eq.
this has been seen in Monte Carlo simulatif8and via  (19) can be evaluated as a saddle point integral. The Euler-
transfer matrix techniquegd.0]. A general argument using a Lagrange equation that specifies the saddle point will be of
Ginzburg criterion has also been given by Binflét]. To  the same form as Eq2). Identifying p, as the constant
study MF systems in a rigorous way Kat al. [12] intro-  solution that specifies the density of the I|qU|d we write
duced the idea that, if a system has an interaction potential 9f(r)— , +y(r). As in AM we assume thai(r) is small
the formV(|x])=V,er(|X]) + Y #(y|r]) whereV,¢(|X) isa  since we are near a pseudosplnodal critical point. Expanding
short range reference potential is a parameter and i #(r) we obtain an equation fop(r) of the same form as
J79é(y|x|)dx=D<=, then in the limity—0 the system Eq.(3).
will be MF. This means that for fluids such a potential results
in the van der Waals equation with the attendant MF critical — s T 2 —
exponents and spinodals. In magnetic systems the result is Rd“ A(lr=r")i(r")dr +b(h,T)¢2(f)}=0, (21)
the Curie-Weiss description. We have assumed that the in-
teraction is spherically symmetric for simplicity but that whereA(|r—r'[)=A(|r—r'|)+b,8(r—r") .
need not be the case. To obtain the nucleation droplet we assume a solution of

In order to generate near-mean-fiéldMF) systems we the form
use the approach of Kac, however we tak&€1 but finite.

That is, we do not take the—0 limit. In NMF systems _ . I

there is no true spinodal but, depending on the interaction l/l(l’)zz exp(ik(’,'n-r)zp’(r), (22
rangeR=y~ 1, the system will behave as if there is a spin- n

odal as long as one does not approach the singularity too

closely[9-11]. We will refer to such apparent singularities wherek,=Rk, andL is a length to be determined. We as-
as pseudospinodals. To study nucleation in systems witaume at the outset that>|k,| ~*, which will be seen to be
Iﬁng rar;]gt_e Interaf;tlonjdl:ndergomg dleep que?cr;]es we adogltie self consistently. As befodeko| is the location of the
the techniques of saddle point evaluation of the partition - -—c . > -, ,
function [13] to nucleation near the pseudospinof/14]. global minimum of A([k|). Since [ko|~R, #'(r/L) is a
We begin with a Landau-Ginzburg-Wilson Hamiltonian SIowly varying function off Consequently, we can expand
identical toF (p) in Eq. (1) but with one additional require- ' (r’/L) in a gradient expansion abouit=r. The first three
ment. We take the interaction term terms in the expansion are

dr|. (20

C(I5=y1)= ¥A (IR -3, | L A G
(%51 = YA (5133 an w'(f)w’ o, >.W(f) L
where theA has the properties of the long range Kac poten-
tial described above. We will takg to be small but finite so |F—r 2 i
that we are describing NMF rather than MF systems. Our +— szp ( ) , (23
HamiltonianH is then L L [r=r
_ E d where the gradient and Laplacian are with respedt tb
H(p) f AGX=YDp(0p(y)dxdy Since A(|r—r'|)—0 as|r—r’|—o, |r—r’|/L<1 for

largeL and we can truncate the series in E2f) after terms

i E ba(h,T) “()Z)d)?—hf p()?)df( (18) of the second order. Inserting EQ2) and Eq.(23) into Eq.
" ' (21) we obtain
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- VI Y F Al 7 NI Aot Y g . g
RY > exp(ikoyn.r)A(|ko|)¢r(E J A(r=r"PHw(r)" dr'—2|b(h,T)| (Y2 )w(r)=rw(r),
" (28)
o= 1o r — e
_G(h’T)En: eXp('ko,n'r)FV ¢ ) Fb(hT) wherey(e¥?r) is the solution to Eq(21) given in Eq.(22).
We assume that the eigenvector has the form
L\ T

X E eXFJ(iko,n~r)) ‘/JZ(E) =0, (29 R - - N

n w(r)=2, exp(iky r)W(eV?). (29
n

where the Laplacian is with respectttL and . .
Employing the same arguments we used to obtain(Eg.

we find that the eigenvector has the same interior structure as
G(h’T):f IF=r'[2A(F = r'd(F—F")<0. (25 the critical droplet and an envelope that is the solution of

involvi ient i : G(h,T)V2W( ') + eW( e/
The term involving the gLadlent is zero as it reduces to a (h,T) (€71)+eW(e™)

function proportional tav gA(|k|) |-k and|k,| is the global —2|b(h, T[4’ (e"r)W(e¥r) =\ W(e¥™), (30)

minimum of A(|k|). Since we are near a spinoda(|K,|) .

=e<1. We can assumpp] that ¢/ (r/L)~e€ as long as. ~ where we have seéi(|ko|)=e.

~e 12 Hence In d=1 the solution of Eq(27) can easily be seen by
substitution to be

X
—) , (26) o Del?

 cosR(awe¥)’ S

where the scaling ok with respect to bothe™Y2 and R is B
explicit. For further discussion of this scaling see Sec. V_whlereda and D ?Irelgon'rsrtnams.l Itrqi—3 Eqd'(zlln has bete'n
The argument of AM is now invoked to limit thlém to lie solved numerically 15]. The solution is radially symmetric,

on equilateral triangles. The critical or nucleating dropleth@s its maximum at the origin and decreases to zer|as
then has the following form: In the interior it is periodic with — Hence E_q(SO)ahas_ the form of a Schdinger equation
a triangular or hexagonal structure in two dimensions and avith a potentialV(|r|) given by
bcc or layered hexagonal or triangular plane structure in
three dimensions. These structures are modulated by an en- TN AR N 127
velope that satisfies the equation V(rh=Adko) =2y (™ r]). (32
g U | A N 1 From the discussion above, this potential is a shallow
G(h,T)V2y' (") +A(lko|) ¢ (€77) well. The lowest eigenvalue will correspond to a bound state
— - and hence will be negative. Moreover the eigenvector corre-
120 1127\ —
+b(h,T)y'“(e"7r)=0, (27 sponding to the bound state will be centered in the center of
the well. From the work of Langefrl3] we know that the
where the Laplacian is with respectitoThe boundary con- €igenstate that corresponds to the negative eigenvalue is an
ditions are that ¢'(e¥%)—~0 when |f|—% and that unstable mode of the droplet. The fact that the bound state is
- 10> - ' Lo centered in the center of the well is confirmation that the
d/d|r|y’ (e¥)=0. at|r|=0. The first condition is simply a

tat t that the droplet is localized. Th 4 bound entire droplet is unstable consistent with the adaptation of the
statement that the droplet 1s localized. The second boundary,, argument. This form of the eigenvector was also seen
condition assures that the droplet has no unphysical kinks

. _ EHumerically in Ising model$§15].
its center[13]. Note also that the structure of E@7) im- The dominant contribution to the probability of the occur-

plies that the solution is a function ¢f|. Since the sign of  rence of a critical droplet comes from inserting the solution
b(h,T) merely sets the sign of’ (e F|) we lose no gen- to the Euler-Lagrange equatipBq. (24)] into the expression
erality by assuming thdt(h,T)<0. for the partition function. The details of this calculation for
From the discussion in Sec. Il this droplet will be un- liquid-gas and magnetic systems can be found in Langer’s
stable, not just on its surface as in classical nucledti@,  paper for classical nucleatidi3] and in Unger and Klein
but in its interior. We can see this explicitly by finding the for spinodal nucleatiofil4]. The adaptation to liquid-solid
eigenvector associated with the negative eigenvfl@¢ of  nucleation near the spinodal of the supercooled liquid of the
the operator obtained by a linear stability analysis about theaddle point part of the calculation is straightforwafd.
critical droplet. That is, we want the solution of The free-energy barrier to nucleation then is given by
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T nents for the spinodaks~ e, ¢~ e andé~Re™ 2 where
F(h,T)=R fA(|r—r (e r) (e )drdr we have made th® dependence of the correlation length
explicit, we have
—|b(h,T)|fE3(elf2F)dF, (33 1
Rd 2-d72 <1 (39

where ¢(eV%) is the solution to Eq(21). From Egs.(22)
and (26) we have or

_ d _3-—d/2
F(h,T)=Rde3f A’(|F—F’|){Z exp(ilzg’n-F)\If(el’ZF)} Riem 7>1 (40
n
for MF theory to be a good approximation. If the left hand
side of Eq.(40) is infinite then MF theory is exact. Since
spinodals are MF objects and pseudospinodals affect the
. physics only if the system is NMF we require the condition
- 1o 4> in Eq. (40) to hold if we are to see the spinodal nucleation
_|b(h’T)|f [; exmko’nw)} W3, process described above.
If R>1 thene can be small and the spinodal can be
(34 approachedd<1) with the Ginzburg criterioR?e3 92 still
— > - — . - valid. For Ising models the spinodal can be seen by measure-
whereA(|E—r N=eA"(Ir=r'[) andk; ;= Rk, ments of the isothermal susceptibility that will divergeRas

When |k, | #0 —o ande—0 [9]. In the supercooled liquid the static struc-
ture factor is known rigorously to diverge #|+0 [16].
However, in this case the situation is more complicated and
the measured divergence is suppressedifed [17].

The implications of these investigations is that the argu-
whereé= e~ Y2 s the correlation length near the spinodal in ment of AM, while it does not predict the structure of stable
scaled units. Therefore, the dominant contribution to the cucrystals, can be adapted to determine the structure of at least
bic term in Eq.(34) will be given by those terms in the sum one kind of nucleation droplet near the pseudospinodal in
(Eneilzolnf)s that are spatial constants. The same analysigq“ids with long range interactions. Questions have been

can be done for the quadratic term in E84). The dominant raised in the work of GM about the possibility of other forms

. . - ... of nucleation droplets near the spinodal. In the following
contnputlop Wlll_come from the, , vectors that appear with section we will address this question.
opposite signs in the sums and result in exponentials of the

form ex;[lzo,n-(F—F’)]. These terms will be of ordef and all
other terms will be reduced by a factor ok4/as in Eq.(35).

X

n

> exp(ik»(’,’n-F’)‘P(el’zf’)}dFdF’

- - IR
ferikO,n-r)xp(elf2r)dr~E=ed’2, (35)

V. UNIQUENESS OF CRITICAL DROPLET

The free-energy barrier is then The question of the uniqueness of a critical droplet, given
4 adn the thermodynamic parameters that specify the metastable
F(h,T)=MR%3-92, (36)  state, has not been fully resolved. This is true even in phase

) N » . transitions, such as gas liquid, where there is no spatial sym-
whereM is a constant. The probability of a critical droplet is metry breaking. The resolution of this problem is even more
_ difficult when, as in the nucleation of the crystal from the
_ _ \Mpd 3-d2 ,
Po=g(h,T)exp—MR"e ), (37) liquid, the spatial symmetry changes. To completely answer

. this question for a givefl andh, all solutions of the Euler-
whereg(h,T) is small compared to the exponentjaB, 14. Lagrange equation resulting from setting the functional de-

The exponential dominates the probability of a nucleation "~ . .
or critical droplet. To get a feel for the magnitude of the fivative of H(p) found in Eq.(20) would have to be found

argument of the exponential we turn to consideration of th%’:\nd the free-energy cost of each solution evaluated. This is a
so-called Ginzburg criterion for the validity of a mean-field ormidable task that has yet to be done either analytically or

treatment[11]. In MF systems fluctuations can be ignored nurlrr:etrrl]ceaIIS)i/r.n ler liquid-aas nucleation process. althouah it
when calculating thermodynamic quantitigkl]. Ginzburg P quic-g P ' g

pointed out that this implies that the fluctuations of the ordelha.s not been_ proven, the idea that there is only one saddlg
oint separating the metastable and stable state seems quite

parameter must be small compared to its mean value. That Eéasonable. In the liquid-solid transition multiple saddle
d points with different spatial symmetries seems more plau-
EXT <1 (38  sible. In this regard GM7] have performed a bifurcation
gdgp2 analysis of supercooled liquids near the spinodal. They found
that the first-order bifurcation analysis yields only a bcc so-
where¢ is the correlation length as aboveg; is the suscep- lution but that the second-order analysis results in a solution

tibility, and ¢ is the order parameter. Using the MF expo- with an fcc symmetry. They also found that within the mean-
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field Landau theory the bcc structure has a lower maXImump4(F/|_) neg|ecting h|gher orders i®. These higher-order
of the free energy than the fcc structure. The word StrUCtUrQerms can be included with no essential Change in the argu-
was used rather than phase since, as we have seen in Sec. Hent. If the term

these structures are unstable. Groh and Mulder however, do
not consider nucleation. It is the purpose of this section to
provide an argument, unfortunately not a proof, that as the
spinodal is approached the bcc nucleation droplet found in
the preceding section dominates the nucleation process. slower than 1/? as the spinodal is approached, then the
We begin by noting that it is necessary to have the lineataplacian term can be ignored. This would result, assuming

size of the critical or nucleation droplet equal to or largernat symmetry constraints could be satisfieddi(r/L) be-
than the correlation length. Particles separated by a scalgg 3 spatial constant. Since nucleation droplets are, almost
smaller than the correlation length are highly correlatedy, gefinition, localized this result would clearly be unsatis-

Therefore, the statistical fluctuations that begin the evolutioaciory. The only way that the term in E@3) can go to zero

up a saddle point hill should involve regions that are at least . S . YT
of the correlation length size. The converse is not true. Criti-at all is if the sum is limited to terms in whiclky| = |k,|

cal droplets can be large compared to the correlation lengtfhereko has the same meaning as in previous sectidee
since critical droplets are rare compared to the fluctuation&9: (24).]

that set the scale for correlations. It has been the case in all 1herefore, we must have

simulations that have looked at nucleation that the critical N N

droplet size is either equal to or larger than the correlation > exp(ik,-)A(|ky|) =2 expliKonT)A(|Ko o)~ €
length[18,19. This being the case then the critical droplet n n

profile z/;()?) can be approximated by the form

> expliky-1A(|Kq|)—0 (43)

(44)

as this is the only possible way that this term can go to zero
) as e—0. Since the terms linear i® must scale the same

>

(4D way this implies that 1/2~€ so thatL~e Y2 or L~ £. If
b(h,T) is not zero in Eq(42) then®(r/L) must scale as.

If it were to scale ag* with x>1 then the nonlinear terms in
@ in Eq. (42) can be ignored relative to the linear terms. This
results in a solution of the form

r
L

P(X)= >, exp(ilZn-F)cb(

where theIZn are the entire set of reciprocal lattice vectors
andL=¢. This form of the droplet clearly is not exact. We
would expect some effect of the fact that the envelope will

decay to zero afr/L|—= on the symmetry. However, that r _ . .
will be in the tail of the droplet, which is expected to have Q(E) =P (V) =C expe¥n 1)+ Cyexp — eV 1),
exponential deca}14,6,19 [also see Eq.31)] and will have (45)
negligible effect on the interior symmetry. Near the spinodal

where the correlation length diverges, the interior of the \yheren is a unit vector whose direction is arbitrary. For the
droplet will be unaffected by the envelope. In addition anyqygpjet to be localized the consta@y must be set to zero.

scaling should also be unaffected by the approximation madeps resuits in a violation of the boundary condition that the
at the edge of the droplet.

With arguments essentially identical to those of Sec. IV
the envelope obeys an equation similar to Ef).

derivative with respect tdr| is zero at|r|=0. Hence this
droplet is physically ruled out. Ik<1 then the linear terms
in @, including the Laplacian term, can be ignored resulting
again in a nonlocal solution. In general nucleation from the
liquid to the solid is described by Hamilitonians in which
b(h,T)#0 and hence the AM argument can be used to fix
the spatial symmetry in the interior of the critical droplet.

p) exr{(ifn~F)X(|Enl)®(E)

s sy r Note thatb(h,T) is a function ofh and T and is therefore
—[G(h,T)] - explik, r)Vee L specified only by the parameters that define the metastable
state.

-

2
+b(h,T)[2 exp(ik*n-r*)} @2(E

Suppose thab(h,T)=0. In this case, arguments similar

to the ones above imply that(r/L)~ 2 The ®* term in
the Hamiltonian is now relevant and the nucleation barrier
LT will now scale aR%?~ 2. In addition a simple extension of

+C(h,T)[2 exp(iky- f)} ¢3(E) =0, (42 AM indicates that the droplet symmetry will now be a square
" lattice ind=2 and an fcc lattice, or stacked layers of square

R lattices, ind=3.

where the Laplacian is with respectrt@andG(h, T), b(h,T) It is interesting to ask why, except for a particular sym-

andc(h,T) are independent af andk. The Laplacian term metry of the Hamiltonian, the critical droplet has a bcc sym-

is of order 1L.2 and L=¢~€ Y2 We have restricted our metry ind=3 when the bifurcation analysis of GM indicates

considerations to Hamiltonians that include terms up tahat an fcc bifurcation is also allowed even when the coeffi-

—_—

-
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cient[b(h,T)] of the cubic term in the Hamiltonian is non- ment that was used to show that the AM “crystal” was
zero. Repeating the GM analysis is beyond the scope of thignstable is also used to show that the critical droplet is un-
paper however, the key to their construction of the fcc bifur-stable. This is, however, physically reasonable for a critical

cation is the use of lattice vectors for whigk|#|k.|. The  droplet near a spinod4b,14]. It is important to stress that
argument we used made use(&f the requirement that the the bcc_: dropl_et structure here does not refer to a stable bcc
droplet be localized(2) the droplet has no kinks at its center, Phase in the interior of the droplet as one would expect from
and (3) the assumption that the linear droplet sizevas ~ classsical nucleatiof2l]. The bcc structure simply means
greater than or equal to the correlation lengttThese con- that the density variation in the critical droplet, which is
ditions taken together result¢dee Eqs(43) and(44)] ina  inherently unstable, has a bcc symmetry.

restriction of the reciprocal lattice vectors to those for which It should also be noted that droplets like the ones pre-
|IZ|=|IZO|. These conditions, while necessary for specifyingd'c.ted in this paper were found in molecu!ar dynamics simu-
the nucleation problem are not needed in the bifurcatior*at'onS of supercooled Lennard-Jones flu!d_s even though the
analysis of GM. Hence, even though the fcc bifurcation isstable crystal has a fcc structyi@0]. In addition it is known

allowed it will not occur in a critical droplet as the spinodal from theoretical studies of the Ilqu@—gas transition that as
is approached. one moves away from the pseudospinodal the droplet devel-

It is important to emphasize that we have restricted ouPPs @ core that appears almost classi¢l. This phenom-

consideration to Hamiltonians that are in the same class ag °" 'S consistent with the results of a density functional

that considered by AM. In density functional language thiscalculation of liquid solid nucleation by Shen and Oxtoby
implies that all direct correlation functions higher than the[21]'

pair are zero. Whether the inclusion of higher-order correla- Many systems of technolog|pal Importance havg long
tion functions changes the result remains to be seen. range, or effective long range interactions. T_hese l_n_clude
polymers[11], neutral plasmas, and metq2]. Since criti-

cal droplets are at least the size of the correlation length and
all statistical lengths, such as the droplet diameter, are mea-

We have argued that the prediction of a stable bcc phasgured in units of the interaction rangg classical nucleation,
near a spinodal, or pseudospinodal, of a supercooled liquighere the surface tension is assumed to remain non8&io
by AM is not correct. The predicted bce phase is unstable fowill be strongly suppressed. In these systems, spinodal
any value of the thermodynamic parameters. This is differen[]l.ldeatiorl will dominate the metastable state decay. Since
from the analysis of GM that used the spinodal as a bifurcathe structure of the interior of a spinodal nucleation droplet is
tion point and examined the structure of the AM solutionshot the stable crystal as would be expected in the classical
near the bifurcation. In addition, the requirement that theProcess the evolution of this droplet as it grows will be an
spinodal be a bifurcation point imposes the condition that ifmportant step in determining the structure of the stable or
can be approached arbitrarily closely. From the Ginzburgnetastable crystal.
criterion of Eq.(40) this implies thaR— and the system is
MF. The rgsult obtained for the _insta_lbility of these _splutior_ls ACKNOWLEDGMENTS
is not restricted to MF systems in this work. In addition this
result is valid away from a spinodal should the system be It is a pleasure for me to acknowledge interesting and
MF. stimulating discussions with E. Matolla, T. Lookman, A.

However, we have used the AM argument to show thatSaxena, F. J. Alexander, and D. Hatch. This work was per-
the nucleation or critical droplet near a spinodal does havéormed under the auspicies of the DOE at Los Alamos Na-
triangular structure in two dimensions and a possibly bcctional Laboratory under Grant Nos. DE-FG02-95ER14498
like structure in three dimensions. As discussed in Sec. I\and LDRD-DR-2001501. It is also a pleasure for me to ac-
there is also a possible droplet structure consisting of stackekhowledge the support and hospitality of the Center for Non-
planes in three dimensions, each of which has a trianguldrinear Studies at Los Alamos National Laboratory. This
structure. There is some simulatif28,24] and experimental work was supported by the U.S. Department of Energy, un-
evidence[25] that such a droplet may form. The same argu-der Contract No. W-7405-ENG-36.

VI. SUMMARY AND DISCUSSION
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