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Instability of Alexander-McTague crystals and its implication for nucleation
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We show that the argument of Alexander and McTague, that the bcc crystalline structure is favored in those
crystallization processes where the first-order character is not too pronounced, is not correct. We find that any
solution that satisfies the Alexander-McTague condition is not stable. We investigate the implication of this
result for nucleation near the pseudospinodal in near-meanfield systems.
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I. INTRODUCTION

Predicting the symmetry of crystalline phases from fi
principles and the knowledge of the intermolecular poten
has eluded condensed matter physicists for years. One p
ising path was suggested by Alexander and McTague~AM !
@1# who noted that the Landau-Ginsburg free energy in
cated a particular crystalline form if the first-order nature
the transition from the liquid was not too pronounced. F
systems such as those that interact with a Lennard-Jones~LJ!
potential the AM argument indicated that the crystalli
phase would have a triangular or hexagonal structure id
52 while the same argument suggested that the bcc la
would be favored ind53. This conclusion is independent o
the details of the potential as long as, like LJ, it is spherica
symmetric and the fluid is monatomic. However, simulatio
of LJ and hard sphere systems as well as experiment
metals and rare gasses indicate that these systems freez
an fcc structure@2,3#. This result is also obtained by th
application of density functional theories@4,5#.

In a related development Klein and Leyvraz@6# used the
AM argument to look at nucleation of the crystal from th
metastable liquid in a meanfield system near the spinodal
found a hexagonal or triangular structure for the critic
droplet ind52 and stacked triangular or hexagonal planes
a bcc structure ind53. However, this droplet was unstabl
In addition, Groh and Mulder~GM! @7# also looked at a
mean-field system near a spinodal and, using bifurca
analysis, also noted that the AM argument said nothing ab
the nature of the stable solid but only indicated that a bif
cation to a bcc structure ind53 was favored over bifurca
tions to other periodic structures but the stability of the b
structure was beyond the AM or bifurcation analysis. Fro
these results it is still unclear what the meaning or accur
is of the AM argument. It is the purpose of this paper
perform some additional analysis of these results.

In this paper we present an argument indicating that
crystal satisfying the conditions in AM must be unstab
This argument, which uses the Landau-Ginzburg appro
employed by AM does not require that the system be m
field. In addition we use the techniques of AM to investiga
the nucleation process near the spinodal-like singularity

*Permanent address: Department of Physics and Center for C
putational Science, Boston University, Boston, MA 02215.
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systems with long range interactions. We argue that
droplet with the structure indicated by the AM argume
dominates the nucleation process. The fact that this dropl
unstable is, unlike the phases proposed by AM, physic
reasonable and consistent with other results. In addition
investigate the bifurcation analysis of GM and show that
additional bifurcations to other symmetries that they fin
which are not found by AM are not relevant to nucleation

The remainder of this paper is structured as follows.
Sec. II we describe the method of AM. In Sec. III we prese
the argument for instability. In Secs. IV and V we discuss
implcations of this argument for nucleation of the crys
from the liquid and in Sec. VI we summarize and discuss
results.

II. ALEXANDER-McTAGUE

In this section we give a brief description of the argume
of AM @1#. We will use a slightly different, but equivalen
approach. We begin with the Landau-Ginzburg free ener

F~r!5
1

2E E C~ uxW2yW u!r~xW !r~yW !dxWdyW1E f ~r~xW !,T!dxW

2hE r~xW !dxW . ~1!

In the above we assume, following AM, that the interacti
term is quadratic inr and thatf (r,T) can be expanded in a
power series inr for fixed T. The quantityh is the chemical
potential. The Euler-Lagrange equation that specifies
equilibrium state is obtained by functionally differentiatin
Eq. ~1! and setting the derivative equal to zero.

E C~ uxW2yW u!r~yW !dyW1
] f ~r,T!

]r
2h50. ~2!

We assume that there is a constant solutionro corresponding
to the stable or metastable liquid at the values ofT andh we
are investigating. Definingc(xW ) through r(xW )5ro1c(xW )
and inserting this expression in Eq.~2! we obtain

E A~ uxW2yW u!c~yW !dyW1b~h,T!c2~xW !50. ~3!
m-
©2001 The American Physical Society10-1
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W. KLEIN PHYSICAL REVIEW E 64 056110
Hereb(h,T) is the coefficient of the term quadratic inc(xW )
arising out of a Taylor series expansion of] f (r)/]r. The
dependence ofb(h,T) on h andT is throughro . The term

A(uxW2yW u)5C(uxW2yW u)1b1d(xW2yW ) where b1 is the coeffi-

cient of the term linear inc(xW ) in the Taylor expansion tha

also depends onh andT throughro andd(xW2yW ) is the Dirac
d function. Following AM we have truncated the Taylor e
pansion after the quadratic term using the assumption

c(xW )!1, i.e., the first-order nature of the transition is not t
pronounced. We will see that this can be justified in a s
consistent manner.

Again following AM we consider the system in the neig
borhood of a critical point associated with the fluid@1#. The

critical point is characterized byÂ(ukWo)u)50, whereukWou is

the location of the global minimum ofĈ(u(kW u) defined in Eq.

~1!. Near the critical pointÂ(ukWou)5e!1. The hat denotes
the Fourier Transform ande5(T2TS)/TS whereTS is the
critical temperature. From Eq.~3! we obtain, after Fourier
transform,

Â~ ukW u!ĉ~kW !1b~h,T!E ĉ~kW2kW8!ĉ~kW8!dkW850. ~4!

There is one solution of Eq.~4! that scales withe, i.e.,

ĉ(kW );e or c(xW );e. The scaling justifies neglecting th
higher-order terms inc since they will be higher order ine.
Such scaling solutions, assuming of course that they e
will have a free-energy cost that differs from the liquid b
terms of ordere. What about solutions that do not scal
Unless the critical pointTS is on the coexistence curve
seems likely that there would be solutions with a lower fr
energy than the liquid ase→0. This existence of other so
lutions is what one would expect if, as we contend, the A
solution is unstable. However, here we are simply followi
the AM argument and do not need to consider the possib
of solutions of the Euler-Lagrange equation that do not sc
and hence require higher-order terms in the Land
Ginzburg free energy than those allowed by AM. The qu
tion of solutions for nucleation droplets that do not sc
with e will be addressed in Sec. V.

We now assume that the solution of Eq.~3! is of the form

c~xW !5(
n

cn~h,T!exp~ ikWn•xW !, ~5!

where thekWn are reciprocal lattice vectors. If we now taked

reciprocal lattice vectors, e.g.,kW1 . . . kWd whered is the spatial
dimension, to have a magnitudeukWou then we have a solution
in which c1 . . . cd@cn for n.d when e . . . 1; that is for
values ofh andT near the critical point.

To see this, we simply insert Eq.~5! into Eq.~3! to obtain
05611
at

f-

t,

e

y
le
-
-

(
n51

`

cn~h,T!Â~ ukWnu!exp~ ikWn•xW !1b~h,T!

3F (
n51

`

cn~h,T!exp~ ikWn•xW !G2

50. ~6!

We now takec1(h,T) . . . cd(h,T);e and all othercn(h,T)
to be higher order ine. We can assumeÂ(ukWnu);1 for n
Þ1, . . . ,d. It is straightforward to generalize this argume
to the case of a finite number of degenerate global minim
For e!1 the modes with magnitudeukWou dominate the solu-
tion. In the limit e→0 these modes are the only ones th
contribute. Since these modes dominate fore!1 they must
be such that@(n51

d exp(ikWo,n•xW)#2 has the same symmetry a

exp(ikWo,n•xW). HerekWo,n is one of thed reciprocal lattice vec-
tors with magnitudeukWou. Note that the sum contains expo
nentials and their complex conjugates as the sum mus
real. Therefore as in AM we must have that the recipro
lattice vectors form equilateral triangles. In two dimensio
this generates a triangular or hexagonal lattice in real sp
and in three dimensions either bcc or layered triangular
hexagonal structures. This result was also derived via a
furcation analysis by GM@7#. In the following section we
investigate the stability of the solutions of Eq.~3!.

III. STABILITY OF THE ALEXANDER-McTAGUE
SOLUTIONS

To check the stability of the solutions of Eq.~3! we per-
form a simple linear stability analysis. Writingc(xW )1h(xW ),
whereh(xW ) is a small arbitrary perturbation andc(xW ) is a
solution to Eq.~3!, and inserting this in Eq.~3! we obtain

E A~ uxW2yW u!h~yW !dyW12b~h,T!c~xW !h~xW !5F„h~xW !….

~7!

The functionF„h(xW )… can be expanded in the eigenvecto
of the operator on the left hand side of Eq.~7!. If the eigen-
values of the operator are all positive then the solution
linearly stable. If there is at least one negative eigenvalue
solution is linearly unstable. We will show that there mu
exist at least one negative eigenvalue.

The proof makes use of the well known fact that if w
have an Hermitian operatorQ defined on a Hilbert space

then the average ofQ, which we will call Q̄, which is de-
fined as

Q̄5
^xuQux&

^xux&
~8!

is an upper bound for the lowest eigenvalue of the opera
Q. Hereux& is any vector in the Hilbert space. The derivatio
of this result is quite straightforward and can be found
Ref. @8# as well as most elementary books on quantum m
0-2



e

ch
e

r

e

INSTABILITY OF ALEXANDER-McTAGUE CRYSTALS . . . PHYSICAL REVIEW E 64 056110
chanics. Note that the operator in Eq.~7! is both real and
symmetric and hence Hermitian. The Hilbert space we us
defined with plane wave normalization.

Since we are primarily interested in the situation in whi
the fluid phase with densityro is stable or metastable w
w

v
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re
ab
m

t

05611
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begin with this case first. SinceÂ(kW ) is the kW dependent
susceptibility of the uniform fluid if the fluid is stable o
metastable thenÂ(kW ).0 for all ukW u. Usingc(xW ), the solution
to Eq. ~3!, as the vectorux& in our bound we have that th
boundB is given by
B5

E c!~xW !A~ uxW2yW u!c~yW !dxW dyW12b~h,T!E c!~xW !c2~xW !dxW

E uc~xW !u2dxW
. ~9!
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Sincec(xW ) is a solution to Eq.~3! the boundB reduces to

B5

2E c!~xW !A~ uxW2yW u!c~yW !dxW dyW

E uc~xW !u2 dxW
. ~10!

Converting to Fourier space by using Parseval’s theorem
have

2BE uĉ~kW !u2dkW5E uĉ~kW !u2Â~ ukW u!dkW . ~11!

SinceÂ(ukW u) is assumed to be positive definite we must ha
B,0. Hence, the upper bound of the lowest eigenvalue
less than zero that proves the result. Note the fact thatc(xW )
is periodic was never used in the argument that is there
valid for any solution of Eq.~3!.

Although it is not relevant for the AM argument, whe
the question of the structure of the solid phase near a st
or metastable liquid was considered, for the sake of co
pleteness we demonstrate that the solutions of Eq.~3! are
unstable whenÂ(ukW u),0 for some value~s! of ukW u; that is,
when the liquid phase is unstable. Equation~8! for the lowest
eigenvalue bound can be written as

BE uw~xW !u2 dxW5E w!~xW !A~ uxW2yW u!w~yW !dxW dyW

12b~h,T!E c~xW !w!~xW !w~xW !dxW ,

~12!

where the operatorQ is given in Eq.~7!. We choose the tes
function w(xW )5exp(ikWo•xW) so that

BV5Â~ ukWou!V12b~h,T!C, ~13!

whereC5*c(xW )dxW andV is the system volume. SincekWo is
the location of the global minimum ofÂ(ukW u) and, by as-
e

e
is

re

le
-

sumption,Â(ukW u),0 for someukW u, Â(ukWou),0. Returning to
Eq. ~3! multiplying by b(h,T) and integrating with respect to
xW yields

b~h,T!C5

2b2~h,T!E uc2~xW !udxW

Â~0!
. ~14!

Substituting Eq.~14! into Eq. ~13! we obtain

BV5Â~ ukWou!V2

2b2~h,T!E uc~xW !u2 dxW

Â~0!
. ~15!

Sinceb(h,T) is real andÂ(ukWou) is assumed to be negative
if Â(0).0 thenB,0. If Â(0),0 Eq. ~3! can no longer be
used to generate an equlibrium crystal. This occurs beca
A(xW2yW ) and b(h,T) are functions ofro that is unstable to
spatially constant perturbations.

The one situation left to address is the one in wh
Â(ukW u) is positive for allukW u except forukWou where it is equal
to zero. This is the situation in which the system is at t
critical point. From Eq.~11! we now haveB50 if ĉ(kW )
5d(kW2kWo). This implies thatc(xW )5exp(ikWo•xW). However,
from our discussion in Sec. IIc(xW );e5Â(ukWou)50. There-
fore the solution of Eq.~2! in this case describes the infi
nitely long lived fluctuations at the critical point and not
phase.

Note that the condition that we be near a critical po
(Â(ukW u)5e!1 for someukW u) was necessary to argue that th
AM crystals were in fact minima of the free energy. How
ever, the critical point condition was not used to show th
the solution of Eq.~3! was unstable. In addition, we have n
specified the nature of the critical point. When the critic
point is a spinodal then the AM argument becomes qu
useful in determining the nature of the critical droplet in t
nucleation process that takes place near the pseudospin
in near-mean-field systems. We discuss this application
the following section.
0-3
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W. KLEIN PHYSICAL REVIEW E 64 056110
Note also that the same argument that was used to s
that the solutions of Eq.~3! are unstable can be used on a
equation of the form

E A~ uxW2yW u!c~yW !dyW1q~h,T!cn~xW !50, ~16!

wheren in any integer greater than or equal to two.

IV. SPINODAL NUCLEATION OF A CRYSTAL
FROM THE LIQUID

In this section we apply the ideas of AM to the problem
the nucleation of a crystalline solid from the liquid near
pseudospinodal in a near-mean-field system. First we n
that spinodals, in the sense that one finds them in the van
Waals theory of liquids or the Curie-Weiss theory of ma
netic systems, are mean-field~MF! objects. In Ising models
this has been seen in Monte Carlo simulations@9# and via
transfer matrix techniques@10#. A general argument using
Ginzburg criterion has also been given by Binder@11#. To
study MF systems in a rigorous way Kacet al. @12# intro-
duced the idea that, if a system has an interaction potenti
the formV(uxW u)5Vre f(uxW u)1gdf(gurWu) whereVre f(uxW ) is a
short range reference potential,g is a parameter and
*gdf(guxW u)dxW5D,`, then in the limitg→0 the system
will be MF. This means that for fluids such a potential resu
in the van der Waals equation with the attendant MF criti
exponents and spinodals. In magnetic systems the resu
the Curie-Weiss description. We have assumed that the
teraction is spherically symmetric for simplicity but th
need not be the case.

In order to generate near-mean-field~NMF! systems we
use the approach of Kac, however we takeg!1 but finite.
That is, we do not take theg→0 limit. In NMF systems
there is no true spinodal but, depending on the interac
rangeR5g21, the system will behave as if there is a spi
odal as long as one does not approach the singularity
closely @9–11#. We will refer to such apparent singularitie
as pseudospinodals. To study nucleation in systems
long range interactions undergoing deep quenches we a
the techniques of saddle point evaluation of the partit
function @13# to nucleation near the pseudospinodal@6,14#.
We begin with a Landau-Ginzburg-Wilson Hamiltonia
identical toF(r) in Eq. ~1! but with one additional require
ment. We take the interaction term

C~ uxW2yW u!5gdL~guxW2yW u!, ~17!

where theL has the properties of the long range Kac pote
tial described above. We will takeg to be small but finite so
that we are describing NMF rather than MF systems. O
HamiltonianH is then

H~r!5
1

2E gdL~guxW2yW u!r~xW !r~yW !dxW dyW

1 (
n51

` E bn~h,T!rn~xW !dxW2hE r~xW !dxW , ~18!
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where we have made the Taylor series expansion off (r,T)
explicit. The partition function in the canonical ensemble

Z5E dr exp@2bH~r!#, ~19!

whereb51/KBT.
Using R5g21 and assuming thatr(rW)5r(xW /R) the

HamiltonianH in terms of scaled lengths becomes

H~r!5RdF1

2E L~ urW2rW8u!r~rW !r~rW8!drW drW8

1 (
n51

`

bn~h,T!E rn~rW !drW2hE r~rW !drWG . ~20!

For R@1 ~i.e., the NMF limit! the partition function in Eq.
~19! can be evaluated as a saddle point integral. The Eu
Lagrange equation that specifies the saddle point will be
the same form as Eq.~2!. Identifying ro as the constan
solution that specifies the density of the liquid we wr
r(rW)5ro1c̄(rW). As in AM we assume thatc̄(rW) is small
since we are near a pseudospinodal critical point. Expand
in c̄(rW) we obtain an equation forc̄(rW) of the same form as
Eq. ~3!.

RdF E Ā~ urW2rW8u!c̄~rW8!drW81b~h,T!c̄2~rW !G50, ~21!

whereĀ(urW2rW8u)5L(urW2rW8u)1b1d(rW2rW8) .
To obtain the nucleation droplet we assume a solution

the form

c̄~rW !5(
n

exp~ ikWo,n8 •rW !c̄8S rW

L
D , ~22!

wherekWo85RkWo and L is a length to be determined. We a

sume at the outset thatL@ukWou21, which will be seen to be
true self consistently. As beforeukWou is the location of the

global minimum of Â̄(ukW u). Since ukWou;R, c̄8(rW/L) is a
slowly varying function ofrW. Consequently, we can expan
c̄8(rW8/L) in a gradient expansion aboutrW85rW. The first three
terms in the expansion are

c̄8S rW8

L
D 5c̄8S rW8

L
D 1

~rW2rW8!

L
•“c̄8S rW8

L
DU rW85rW

1
urW2rW8u2

L2
“

2c̄8S rW8

L
DU

rW85rW

, ~23!

where the gradient and Laplacian are with respect torW8/L
Since Ā(urW2rW8u)→0 as urW2rW8u→`, urW2rW8u/L!1 for

largeL and we can truncate the series in Eq.~23! after terms
of the second order. Inserting Eq.~22! and Eq.~23! into Eq.
~21! we obtain
0-4
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RdF(
n

exp~ ikWo,n•rW !Â̄~ ukWou!c̄8S rW

L
D

2G~h,T!(
n

exp~ ikWo,n•rW !
1

L2
“

2c̄8S rW

L
D 1b~h,T!

3S (
n

exp~ ikWo,n•rW ! D 2

c̄82 S rW

L
D G50, ~24!

where the Laplacian is with respect torW/L and

G~h,T!5E urW2rW8u2Ā~ urW2rW8u!d~rW2rW8!,0. ~25!

The term involving the gradient is zero as it reduces to

function proportional to“kW Ā̂(ukW u)ukW5kWo
andukWou is the global

minimum of Â̄(ukW u). Since we are near a spinodalÂ̄(ukWou)
5e!1. We can assume@6# that c̄8(rW/L);e as long asL
;e21/2. Hence

c̄8S rW

L
D 5eCS xW

Re21/2D , ~26!

where the scaling ofxW with respect to bothe21/2 and R is
explicit. For further discussion of this scaling see Sec.
The argument of AM is now invoked to limit thekWo,n to lie
on equilateral triangles. The critical or nucleating drop
then has the following form: In the interior it is periodic wit
a triangular or hexagonal structure in two dimensions an
bcc or layered hexagonal or triangular plane structure
three dimensions. These structures are modulated by an
velope that satisfies the equation

G~h,T!“2c̄8~e1/2rW !1 Â̄~ ukWou!c̄8~e1/2rW !

1b~h,T!c̄82~e1/2rW !50, ~27!

where the Laplacian is with respect torW. The boundary con-
ditions are that c̄8(e1/2rW)→0 when urWu→` and that
d/durWuc̄8(e1/2rW)50. aturWu50. The first condition is simply a
statement that the droplet is localized. The second boun
condition assures that the droplet has no unphysical kink
its center@13#. Note also that the structure of Eq.~27! im-
plies that the solution is a function ofurWu. Since the sign of
b(h,T) merely sets the sign ofc̄8(e1/2urWu) we lose no gen-
erality by assuming thatb(h,T),0.

From the discussion in Sec. III this droplet will be u
stable, not just on its surface as in classical nucleation@13#,
but in its interior. We can see this explicitly by finding th
eigenvector associated with the negative eigenvalue@13# of
the operator obtained by a linear stability analysis about
critical droplet. That is, we want the solution of
05611
a

.

t

a
n
en-

ry
at

e

E Ā~ urW2rW8u!w~rW !8 drW822ub~h,T!uc̄~e1/2rW !w~rW !5lw~rW !,

~28!

wherec̄(e1/2rW) is the solution to Eq.~21! given in Eq.~22!.
We assume that the eigenvector has the form

w~rW !5(
n

exp~ ikWo•rW !W~e1/2rW !. ~29!

Employing the same arguments we used to obtain Eq.~27!
we find that the eigenvector has the same interior structur
the critical droplet and an envelope that is the solution o

G~h,T!“2W~e1/2rW !1eW~e1/2rW !

22ub~h,T!uc̄8~e1/2rW !W~e1/2rW !5lW~e1/2rW !, ~30!

where we have setÂ̄(ukWou)5e.
In d51 the solution of Eq.~27! can easily be seen b

substitution to be

c̄8~e1/2x!5
De1/2

cosh2~ae1/2x!
, ~31!

where a and D are constants. Ind53 Eq. ~27! has been
solved numerically@15#. The solution is radially symmetric
has its maximum at the origin and decreases to zero asurWu
→` Hence Eq.~30! has the form of a Schro¨dinger equation
with a potentialV(urWu) given by

V~ urWu!5 Â̄~ ukWou!22c̄8~e1/2urWu!. ~32!

From the discussion above, this potential is a shall
well. The lowest eigenvalue will correspond to a bound st
and hence will be negative. Moreover the eigenvector co
sponding to the bound state will be centered in the cente
the well. From the work of Langer@13# we know that the
eigenstate that corresponds to the negative eigenvalue
unstable mode of the droplet. The fact that the bound sta
centered in the center of the well is confirmation that t
entire droplet is unstable consistent with the adaptation of
AM argument. This form of the eigenvector was also se
numerically in Ising models@15#.

The dominant contribution to the probability of the occu
rence of a critical droplet comes from inserting the soluti
to the Euler-Lagrange equation@Eq. ~24!# into the expression
for the partition function. The details of this calculation fo
liquid-gas and magnetic systems can be found in Lang
paper for classical nucleation@13# and in Unger and Klein
for spinodal nucleation@14#. The adaptation to liquid-solid
nucleation near the spinodal of the supercooled liquid of
saddle point part of the calculation is straightforward@6#.
The free-energy barrier to nucleation then is given by
0-5
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F~h,T!5RdE Ā~ urW2rW8u!c̄~e1/2rW !c̄~e1/2rW8!drW drW8

2ub~h,T!u E c̄3~e1/2rW !drW, ~33!

where c̄(e1/2rW) is the solution to Eq.~21!. From Eqs.~22!
and ~26! we have

F~h,T!5Rde3E Ā8~ urW2rW8u!F(
n

exp~ ikWo,n8 •rW !C~e1/2rW !G
3F(

n
exp~ ikWo,n8 •rW8!C~e1/2rW8!GdrW drW8

2ub~h,T!u E F(
n

exp~ ikWo,n8 •rW !G3

C3~e1/2rW !drW,

~34!

whereĀ(urW2rW8u)5eĀ8(urW2rW8u) andkWo,n8 5RkWo,n .

When ukWo,nuÞ0

E exp~ ikWo,n•rW !C~e1/2rW !drW;
1

jd
5ed/2, ~35!

wherej5e21/2 is the correlation length near the spinodal
scaled units. Therefore, the dominant contribution to the
bic term in Eq.~34! will be given by those terms in the sum
((neikWo,n•rW)3 that are spatial constants. The same analy
can be done for the quadratic term in Eq.~34!. The dominant
contribution will come from thekWo,n vectors that appear with
opposite signs in the sums and result in exponentials of
form exp@kWo,n•(rW2rW8)#. These terms will be of orderjd and all
other terms will be reduced by a factor of 1/jd as in Eq.~35!.

The free-energy barrier is then

F~h,T!5MRde32d/2, ~36!

whereM is a constant. The probability of a critical droplet

PD5g~h,T!exp~2MRde32d/2!, ~37!

whereg(h,T) is small compared to the exponential@13,14#.
The exponential dominates the probability of a nucleat

or critical droplet. To get a feel for the magnitude of th
argument of the exponential we turn to consideration of
so-called Ginzburg criterion for the validity of a mean-fie
treatment@11#. In MF systems fluctuations can be ignore
when calculating thermodynamic quantities@11#. Ginzburg
pointed out that this implies that the fluctuations of the or
parameter must be small compared to its mean value. Th

jdxT

j2df2
!1, ~38!

wherej is the correlation length as above,xT is the suscep-
tibility, and f is the order parameter. Using the MF exp
05611
-

is

e

n

e

r
is

nents for the spinodal,xT;e21, f;e andj;Re21/2, where
we have made theR dependence of the correlation leng
explicit, we have

e21

Rde22d/2
!1 ~39!

or

Rde32d/2@1 ~40!

for MF theory to be a good approximation. If the left han
side of Eq.~40! is infinite then MF theory is exact. Sinc
spinodals are MF objects and pseudospinodals affect
physics only if the system is NMF we require the conditi
in Eq. ~40! to hold if we are to see the spinodal nucleati
process described above.

If R@1 then e can be small and the spinodal can
approached (e!1) with the Ginzburg criterionRde32d/2 still
valid. For Ising models the spinodal can be seen by meas
ments of the isothermal susceptibility that will diverge asR
→` ande→0 @9#. In the supercooled liquid the static stru
ture factor is known rigorously to diverge atukW uÞ0 @16#.
However, in this case the situation is more complicated a
the measured divergence is suppressed ford.1 @17#.

The implications of these investigations is that the arg
ment of AM, while it does not predict the structure of stab
crystals, can be adapted to determine the structure of at
one kind of nucleation droplet near the pseudospinoda
liquids with long range interactions. Questions have be
raised in the work of GM about the possibility of other form
of nucleation droplets near the spinodal. In the followi
section we will address this question.

V. UNIQUENESS OF CRITICAL DROPLET

The question of the uniqueness of a critical droplet, giv
the thermodynamic parameters that specify the metast
state, has not been fully resolved. This is true even in ph
transitions, such as gas liquid, where there is no spatial s
metry breaking. The resolution of this problem is even mo
difficult when, as in the nucleation of the crystal from th
liquid, the spatial symmetry changes. To completely ans
this question for a givenT andh, all solutions of the Euler-
Lagrange equation resulting from setting the functional
rivative of H(r) found in Eq.~20! would have to be found
and the free-energy cost of each solution evaluated. This
formidable task that has yet to be done either analytically
numerically.

In the simpler liquid-gas nucleation process, although
has not been proven, the idea that there is only one sa
point separating the metastable and stable state seems
reasonable. In the liquid-solid transition multiple sadd
points with different spatial symmetries seems more pl
sible. In this regard GM@7# have performed a bifurcation
analysis of supercooled liquids near the spinodal. They fo
that the first-order bifurcation analysis yields only a bcc s
lution but that the second-order analysis results in a solu
with an fcc symmetry. They also found that within the mea
0-6
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field Landau theory the bcc structure has a lower maxim
of the free energy than the fcc structure. The word struct
was used rather than phase since, as we have seen in Se
these structures are unstable. Groh and Mulder howeve
not consider nucleation. It is the purpose of this section
provide an argument, unfortunately not a proof, that as
spinodal is approached the bcc nucleation droplet found
the preceding section dominates the nucleation process.

We begin by noting that it is necessary to have the lin
size of the critical or nucleation droplet equal to or larg
than the correlation length. Particles separated by a s
smaller than the correlation length are highly correlat
Therefore, the statistical fluctuations that begin the evolut
up a saddle point hill should involve regions that are at le
of the correlation length size. The converse is not true. C
cal droplets can be large compared to the correlation len
since critical droplets are rare compared to the fluctuati
that set the scale for correlations. It has been the case i
simulations that have looked at nucleation that the criti
droplet size is either equal to or larger than the correlat
length @18,19#. This being the case then the critical drop
profile c(xW ) can be approximated by the form

c~xW !5(
n

exp~ ikWn•rW !FS U rW

L
U D , ~41!

where thekWn are the entire set of reciprocal lattice vecto
andL>j. This form of the droplet clearly is not exact. W
would expect some effect of the fact that the envelope w
decay to zero asurW/Lu→` on the symmetry. However, tha
will be in the tail of the droplet, which is expected to ha
exponential decay@14,6,19# @also see Eq.~31!# and will have
negligible effect on the interior symmetry. Near the spino
where the correlation lengthj diverges, the interior of the
droplet will be unaffected by the envelope. In addition a
scaling should also be unaffected by the approximation m
at the edge of the droplet.

With arguments essentially identical to those of Sec.
the envelope obeys an equation similar to Eq.~24!.

(
n

expF ~ ikWn•rW !Â̄~ ukWnu!FS rW

L
D G

2uG~h,T!u(
n

exp~ ikWn•rW !“2FS rW

L
D

1b~h,T!F(
n

exp~ ikWn•rW !G2

F2S rW

L
D

1c~h,T!F(
n

exp~ ikWn•rW !G3

F3S rW

L
D 50, ~42!

where the Laplacian is with respect torW andG(h,T), b(h,T)
andc(h,T) are independent ofrW andkW . The Laplacian term
is of order 1/L2 and L>j;e21/2. We have restricted ou
considerations to Hamiltonians that include terms up
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F4(rW/L) neglecting higher orders inF. These higher-order
terms can be included with no essential change in the a
ment. If the term

(
n

exp~ ikWn•rW !Â̄~ ukWnu!→0 ~43!

slower than 1/L2 as the spinodal is approached, then t
Laplacian term can be ignored. This would result, assum
that symmetry constraints could be satisfied, inF(rW/L) be-
ing a spatial constant. Since nucleation droplets are, alm
by definition, localized this result would clearly be unsat
factory. The only way that the term in Eq.~43! can go to zero
at all is if the sum is limited to terms in whichukWnu5ukWou
wherekWo has the same meaning as in previous sections.@See
Eq. ~24!.#

Therefore, we must have

(
n

exp~ ikWn•rW !Â̄~ ukWnu!5(
n

exp~ ikWo,n•rW !Â̄~ ukWo,nu!;e

~44!

as this is the only possible way that this term can go to z
as e→0. Since the terms linear inF must scale the sam
way this implies that 1/L2;e so thatL;e21/2 or L;j. If
b(h,T) is not zero in Eq.~42! thenF(rW/L) must scale ase.
If it were to scale asex with x.1 then the nonlinear terms in
F in Eq. ~42! can be ignored relative to the linear terms. Th
results in a solution of the form

FS rW

L
D 5F~e1/2rW !5C1 exp~e1/2n̂•rW !1C2 exp~2e1/2n̂•rW !,

~45!

wheren̂ is a unit vector whose direction is arbitrary. For th
droplet to be localized the constantC1 must be set to zero
This results in a violation of the boundary condition that t
derivative with respect tourWu is zero aturWu50. Hence this
droplet is physically ruled out. Ifx,1 then the linear terms
in F, including the Laplacian term, can be ignored resulti
again in a nonlocal solution. In general nucleation from t
liquid to the solid is described by Hamilitonians in whic
b(h,T)Þ0 and hence the AM argument can be used to
the spatial symmetry in the interior of the critical drople
Note thatb(h,T) is a function ofh and T and is therefore
specified only by the parameters that define the metast
state.

Suppose thatb(h,T)50. In this case, arguments simila
to the ones above imply thatF(rW/L);e1/2. The F4 term in
the Hamiltonian is now relevant and the nucleation barr
will now scale asRde22d/2. In addition a simple extension o
AM indicates that the droplet symmetry will now be a squa
lattice ind52 and an fcc lattice, or stacked layers of squa
lattices, ind53.

It is interesting to ask why, except for a particular sym
metry of the Hamiltonian, the critical droplet has a bcc sy
metry ind53 when the bifurcation analysis of GM indicate
that an fcc bifurcation is also allowed even when the coe
0-7
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cient @b(h,T)# of the cubic term in the Hamiltonian is non
zero. Repeating the GM analysis is beyond the scope of
paper however, the key to their construction of the fcc bif
cation is the use of lattice vectors for whichukW uÞukWou. The
argument we used made use of~1! the requirement that the
droplet be localized,~2! the droplet has no kinks at its cente
and ~3! the assumption that the linear droplet sizeL was
greater than or equal to the correlation lengthj. These con-
ditions taken together resulted@see Eqs.~43! and ~44!# in a
restriction of the reciprocal lattice vectors to those for wh
ukW u5ukWou. These conditions, while necessary for specifyi
the nucleation problem are not needed in the bifurcat
analysis of GM. Hence, even though the fcc bifurcation
allowed it will not occur in a critical droplet as the spinod
is approached.

It is important to emphasize that we have restricted
consideration to Hamiltonians that are in the same clas
that considered by AM. In density functional language t
implies that all direct correlation functions higher than t
pair are zero. Whether the inclusion of higher-order corre
tion functions changes the result remains to be seen.

VI. SUMMARY AND DISCUSSION

We have argued that the prediction of a stable bcc ph
near a spinodal, or pseudospinodal, of a supercooled liq
by AM is not correct. The predicted bcc phase is unstable
any value of the thermodynamic parameters. This is differ
from the analysis of GM that used the spinodal as a bifur
tion point and examined the structure of the AM solutio
near the bifurcation. In addition, the requirement that
spinodal be a bifurcation point imposes the condition tha
can be approached arbitrarily closely. From the Ginzb
criterion of Eq.~40! this implies thatR→` and the system is
MF. The result obtained for the instability of these solutio
is not restricted to MF systems in this work. In addition th
result is valid away from a spinodal should the system
MF.

However, we have used the AM argument to show t
the nucleation or critical droplet near a spinodal does h
triangular structure in two dimensions and a possibly b
like structure in three dimensions. As discussed in Sec.
there is also a possible droplet structure consisting of stac
planes in three dimensions, each of which has a triang
structure. There is some simulation@23,24# and experimenta
evidence@25# that such a droplet may form. The same arg
m
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ment that was used to show that the AM ‘‘crystal’’ wa
unstable is also used to show that the critical droplet is
stable. This is, however, physically reasonable for a criti
droplet near a spinodal@6,14#. It is important to stress tha
the bcc droplet structure here does not refer to a stable
phase in the interior of the droplet as one would expect fr
classsical nucleation@21#. The bcc structure simply mean
that the density variation in the critical droplet, which
inherently unstable, has a bcc symmetry.

It should also be noted that droplets like the ones p
dicted in this paper were found in molecular dynamics sim
lations of supercooled Lennard-Jones fluids even though
stable crystal has a fcc structure@20#. In addition it is known
from theoretical studies of the liquid-gas transition that
one moves away from the pseudospinodal the droplet de
ops a core that appears almost classical@15#. This phenom-
enon is consistent with the results of a density functio
calculation of liquid solid nucleation by Shen and Oxto
@21#.

Many systems of technological importance have lo
range, or effective long range interactions. These inclu
polymers@11#, neutral plasmas, and metals@22#. Since criti-
cal droplets are at least the size of the correlation length
all statistical lengths, such as the droplet diameter, are m
sured in units of the interaction rangeR, classical nucleation
where the surface tension is assumed to remain nonzero@13#
will be strongly suppressed. In these systems, spino
nucleation will dominate the metastable state decay. Si
the structure of the interior of a spinodal nucleation drople
not the stable crystal as would be expected in the class
process the evolution of this droplet as it grows will be
important step in determining the structure of the stable
metastable crystal.
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